geekygadgetutoriales

Blog sobre noticias y tutoriales, de Telecomunicaciones, Informática y Electrónica

Posts Tagged ‘Condensador

Electrónica básica: Símbolos II

Bienvenidos de nuevo a otro artículo de nuestro curso de electrónica básica, en este vamos a describir tres símbolos nuevos para realizar esquemas electrónicos sobre el papel y la descripción de cada uno, para el final os dejaremos un datasheet de ejemplo sobre condensadores. En la figura 1, mostramos los tres nuevos símbolos:

Figura 1. Símbolos

Figura 1. Símbolos

Como podemos observar, el primer elemento tiene el nombre de Fuente Alterna, esta fuente nos ofrece una tensión alterna, como su nombre indica, de forma tipo seno, con una frecuencia de 10 (Mhz) y 10 (v) de amplitud, es decir, el mismo tipo de señal que teníamos en el artículo donde hablamos de señales, en instrumentación a esto se le llama generador de funciones. Los otros dos componentes son dos condensadores idénticos excepto en que uno de ellos posee polaridad, esto significa que dispone de terminal positivo y negativo, tal como vimos en los condensadores electrolíticos. Una vez descritos, cuando nos los encontremos en cualquier esquema electrónico, ahora ya sabremos identificarlos.

Y para terminar lo prometido, os dejamos este datasheet u hoja de características sobre condensadores de tipo poliéster, en nuestra página oficial del Área TIC Apfos:

Hoja caraterísticas condensadores poliéster

Hasta el próximo artículo.

 

Electrónica Básica: El Condensador IV

Bienvenidos de nuevo a otro artículo de nuestro curso de electrónica básica, en esta ocasión vamos a aprender como reducir circuitos que tengan resistencias (esto ya lo vimos en otros artículos) y condensadores. Así pues vamos a ver primero dos ejemplos, sólo con condensadores y su reducción mutua, pero antes y a modo de recordatorio, en este artículo utilizaremos la fórmula de la figura 1, que llamaremos impedancia del condensador (recordad que el condensador solo tiene sentido en señales variables o alternas, ya que en corriente continua perpetua se comporta como un circuito abierto):

Figura 1. Fórmula Impedancia Condensador

Figura 1. Fórmula Impedancia Condensador

Como podemos observar en la figura 1, esta fórmula la hemos simplificado y como resultado la Xc, también se mide en ohmios. De momento, no vamos a entrar en el cálculo de la fórmula, ya que para este artículo no es necesario, sólo recordar la forma simplificada 1/CS que es la que vamos a utilizar a continuación:

-Circuito con condensadores en serie:

Tal como dice el título, vamos a simplificar dos condensadores que se encuentran en serie, adelantamos que será muy parecido a como lo hicimos con la resistencia, eso sí el resultado no será idéntico porque la fórmula del condensador es diferente. En la figura 2, mostramos el circuito a simplificar, y en la figura 3, el resultado matemático:

Figura 2. Condensadores en serie.

Figura 2. Condensadores en serie.

Como podemos observar en esta figura 2, tenemos los condensadores C1 y C2, que se encuentran en serie, para este artículo no tendremos en cuenta la fuente de alterna, ya que el objetivo es convertir esos dos condensadores en uno solo equivalente. Aunque tengamos solo los valores de capacidad de los dos condensadores, vamos a tratarlos como impedancias, utilizando la fórmula de la figura 1, así pues en la figura 3, mostramos el resultado matemático de esta simplificación:

Figura 3.Cálculo Circuito Figura 2

Figura 3.Cálculo Circuito Figura 2

Como podemos observar en esta figura 3, primero sustituimos los condensadores C1 y C2 por sus impedancias correspondientes, utilizando la fórmula simplificada de la figura 1, como están en serie, estas impedancias se suman, dando como resultado la impedancia equivalente Xcequiv., entonces empezamos a operar, y al final obtenemos como resultado de Cequiv, una relación de los dos condensadores idéntica a cuando teníamos dos resistencias en paralelo y que no dependen de la frecuencia, ya que solo tenemos en cuenta el valor de capacidad en faradios. En principio, estas operaciones hablan por si solas y os hemos ofrecido paso a paso el cálculo, si tienen dudas, por favor emitan el comentario correspondiente e intentaremos ayudarles en la comprensión del mismo. En la figura 4 mostramos el resultado completado al sustituir los valores reales:

Figura 4. Resultado Final

Figura 4. Resultado Final

-Circuito con condensadores en paralelo:

Como en el apartado anterior, vamos a simplificar también dos condensadores, lo único es que estos dos están en paralelo y el circuito lo tenemos en la figura 5:

Figura 5.Circuito Condensadores en Paralelo.

Figura 5. Condensadores en Paralelo.

Y tal como antes, utilizamos la fórmula de la figura 1, imaginariamente debemos sustituir los condensadores por su impedancia equivalente y hacer el cálculo, el resultado lo mostramos en la figura 6.

Figura 6. Cálculos Circuito Figura 5.

Figura 6. Cálculos Circuito Figura 5.

Como podemos ver por los cálculos, dos condensadores en paralelo resulta como uno equivalente sumando sus capacidades correspondientes. Por lo tanto, dos condensadores en paralelo se comportan como dos resistencias en serie, teniendo en cuenta los valores de ohmios y faradios. A continuación en la figura 7, os mostramos el circuito resultado y en la figura 8, el cálculo final para corroborar la teoría:

Figura 7.Circuito equivalente.

Figura 7.Circuito equivalente.

Figura 7. Resultado final circuito figura 5.

Figura 8. Resultado final.

Ahora que ya hemos visto como se simplifican condensadores en serie y paralelo, y para finalizar el artículo, vamos a poner un ejemplo de un circuito con una resistencia y un condensador, con valores reales y su resultado final, en la figura 9 mostramos el circuito ejemplo:

Figura 9. Circuito con condensadores y resistencia.

Figura 9. Circuito con condensadores y resistencia.

Como podemos observar, tenemos un circuito con tres elementos, como de costumbre no contamos la fuente, dos condensadores y una resistencia; por lo tanto en la figura 10, vamos a calcular según las impedancias de los elementos:

Figura 10.Resultado Final.

Figura 10.Resultado Final.

Como podemos observar en los cálculos de la figura 10, la impedancia equivalente total, no dista mucho del valor de la resistencia, esto es debido a que esta depende de la frecuencia de la fuente alterna que en nuestro caso es de 10 (Mhz), al variar pues esta, el valor de impedancia también lo hará, por ejemplo si aumentamos la frecuencia, la impedancia disminuye y al contrario si bajamos la frecuencia.

Hasta aquí nuestro artículo, en el próximo de nuestro curso de electrónica gratis, hablaremos de los símbolos nuevos que hemos aprendido desde el principio, si tenéis dudas realizad comentarios y hasta pronto.

Electrónica Básica: El Condensador III

Bienvenidos de nuevo después de esta parada vacacional, y como no, volvemos con otro artículo de nuestro curso de electrónica gratis, en esta ocasión volvemos con el condensador, para explicar su funcionamiento en corriente continua. Vamos pues a verlo:

-Condensador en corriente continua (c.c.):

-RC serie:

Un filtro paso bajos simple, es un circuito formado por una resistencia en serie con un condensador, en este apartado veremos su funcionamiento en corriente continua (c.c.), por lo tanto tendremos una fuente de este tipo, tal y como mostramos en el esquema de la figura 1:

Circuito R-C serie continua

Figura 1. Circuito R-C serie continua

Si nos fijamos bien en el esquema, tenemos dos voltímetros (instrumento de medida de la tensión en un componente o dispositivo), que miden la tensión en la resistencia (Vr) y en el condensador (Vc) respectivamente. Antes de empezar con la descripción de su funcionamiento, miremos la figura 2, con el resultado de la medición de esas tensiones:

Figura 2. Tensiones Resistencia (Vr) y Condensador (Vc).

Figura 2. Tensiones Resistencia (Vr) y Condensador (Vc).

Como podemos observar en la figura 2, la primera gráfica nos muestra como se va cargando el condensador, hasta los 10 (v) de la fuente (eje vertical), a medida que pasa el tiempo (eje horizontal), en cambio en la segunda gráfica, estamos midiendo la tensión en la resistencia, que tiene la forma inversa a la del condensador, pero, ¿se comporta como un condensador invertido?, ¿la tensión de la resistencia no era fija?, en realidad lo tenemos que observar de la siguiente forma:  como dijimos en el anterior artículo sobre el condensador, este se comporta como un circuito abierto en continua cuando está totalmente cargado, y como vemos en la gráfica el tiempo de carga, aunque sea muy pequeño, pertenece al principio de la excitación de la fuente, por lo tanto el condensador empieza a cargarse y cuando llega casi a 10 (v), es ya un circuito abierto y no requiere de más corriente; al no necesitar este más corriente y convertirse en un circuito abierto, la resistencia, al no tener carga o lo que es lo mismo, ve su terminal al aire o circuito abierto donde no pasará corriente. Por este motivo, la resistencia, al principio ofrece toda la intensidad y a medida que se va cargando el condensador, poco a poco, va dando menos corriente a este y como la forma de onda es exponencial, la tensión en la resistencia también será de esta forma, aunque el comportamiento de la misma es el mismo que hemos visto en otros artículos. Para entender este concepto, debe leer esto varías veces mirando la figura 2 a la vez, sino envíe un comentario. Debemos fijarnos también, en que sino estuviera la resistencia, el condensador se cargaría de forma inmediata, por lo tanto, la resistencia afecta en el tiempo de carga del condensador y como no, existe una fórmula para conocer este tiempo, tal y como se muestra en la figura 3:

figura 3. Fórmula general carga condensador circuito RC.

figura 3. Fórmula general carga condensador circuito RC.

Esta fórmula se lee de la siguiente manera: la t, es una letra griega llamada tau y se utiliza mucho en electrónica para caracterizar la carga y descarga de un condensador o varios, y como resultado obtendremos segundos. Por lo tanto tau es igual a la multiplicación del valor de ohmios de la resistencia por la capacidad en faradios del condensador. Para verlo más claro, en la figura 4, calculamos el tiempo de carga del circuito de la figura 2:

figura 4. Cálculo tiempo de carga ejemplo RC.

figura 4. Cálculo tiempo de carga ejemplo RC.

Como podemos apreciar en esta figura 4, obtenemos como resultado, que el condensador tarda 0,01 segundos en cargarse con esta resistencia, pero si nos fijamos ahora en la figura 2, vemos que en la gráfica de la tensión Vc, el condensador no se ha cargado del todo; en realidad el cálculo de tau, tenemos el 63,2 % de la carga, por este motivo si multiplicamos el valor de tau por 5, obtendremos el 99 % de la carga del condensador, así pues el valor de tau nos dice que el condensador está casi cargado y a 5 veces tau está casi totalmente cargado. Ahora ya sabemos calcular la carga de un condensador en corriente continua, vamos a ver ahora la descarga.

-RC paralelo:

figura 5. Cálculo descarga circuito RC paralelo.

figura 5. Cálculo descarga circuito RC paralelo.

Como podemos observar en este nuevo circuito de la figura 5, tenemos solo dos elementos sin ninguna fuente, esto es posible si tenemos en cuenta que el condensador se encuentra cargado a 10 (v) antes de cerrar el circuito, vaya, exactamente como si fuera una pila. En la figura 6, mostramos las gráficas de descarga del condensador, ya que este se va descargando gracias a la resistencia, por lo tanto ahora tendremos una tau de descarga:

figura 6. Gráfica de descarga del condensador.

figura 6. Gráfica de descarga del condensador.

Como podemos observar, esta gráfica es idéntica a la de la resistencia de la figura 2. Esto es así porque la tau de descarga y la de carga se calculan del mismo modo, y como los componentes son idénticos, pues obtenemos el mismo resultado.

Ahora ya conocemos el funcionamiento del condensador en corriente continua, donde podemos deducir que este, aparentemente no consume tensión a diferencia de la resistencia, y solo se dedica a absorber y ceder corriente, es decir a cargar y descargarse. Esto no es realmente así y en próximos artículos, veremos como el condensador se comporta como una resistencia, eso si, será en corriente alterna como ya vimos en el artículo de señales. En el próximo artículo, hablaremos de la reducción de circuitos donde existan condensadores y resistencias. Esperamos que os haya servido y nos vemos en el próximo artículo. Hasta entonces.

Electrónica Básica: El Condensador I

Condensadores

Condensadores

En este nuevo artículo, vamos ha aprender un nuevo dispositivo, el condensador. Este solo sirve para almacenar energía, en nuestro caso voltaje, durante un tiempo determinado. La unidad de medida es el faradio (F), y como en la resistencia también se aplican los órdenes de magnitud.

A diferencia de la resistencia, el condensador trabaja de dos formas diferentes, dependiendo de la forma de tensión aplicada:

-Corriente Continua (DC): este tipo de tensión, se denomina continua porque tiene forma de línea recta horizontal, es decir posee un valor constante infinito en el tiempo, esto lo veremos más adelante en un artículo sobre señales. En este tipo de tensión, el condensador se “carga”, esto significa que empieza a almacenar energía, y una vez cargado no deja fluir la corriente en su interior, esto ocurre hasta que se deja de aplicar la tensión, entonces este devuelve la misma tensión, se “descarga”, pero con una corriente en sentido contrario, podríamos denominar al condensador como un mantenedor de tensión.

Fórmula General Condensador DC

Fórmula General Condensador DC

-Corriente alterna (AC): este tipo de tensión, se denomina alterna porque tiene forma variable en el tiempo, es decir posee un valor alterno de tensión a lo largo del tiempo. En este tipo de tensión el condensador se comporta como una resistencia variable con la frecuencia y aquí no se “carga” o “descarga”, fijaremos en que solo es una resistencia.

 

Fórmula general condensador AC

Fórmula general condensador AC

Creo que con esto tenemos suficiente por hoy, las fórmulas las dejaremos aquí, ya que al ser un poco más complejas, necesitan de más explicación, pero no se me asusten que la finalidad del blog es realizar todo sencillo. En el próximo artículo presentaré dos circuitos solo de resistencias y los resolveré con una explicación paso a paso para vosotros.

Hasta la vista.